Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

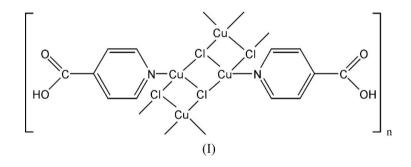
Qi Chen,^a Wenjun Feng,^a Xuefang Zheng^b and Yan Xu^a*

^aInstitute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and ^bLiaoning Key Laboratory of Bio-organic Chemistry, Dalian University, Dalian 116629, People's Republic of China

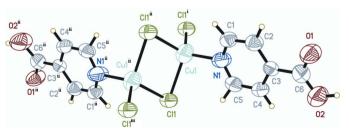
Correspondence e-mail: yanxu@lnnu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å Disorder in main residue R factor = 0.038 wR factor = 0.112 Data-to-parameter ratio = 10.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[(isonicotinic acid- κN)copper(I)]- μ_3 -chloro]


The crystal structure of the title compound, $[CuCl(C_6H_5O_2)]_n$, exhibits polymeric chains extended in the *b*-axis direction, with a shortest Cu···Cu distance of 2.885 (2) Å. The Cu atom is tetrahedrally coordinated by three Cl atoms, each of which bridges three metal atoms, and the N atom of isonicotinic acid. The Cu and Cl atoms lie on mirror planes, across which the isonicotinic acid ligands are disordered. Each Cu₂Cl₂ ring is centrosymmetric. The carboxyl groups are connected by O– H···O hydrogen bonds into an infinite chain running in the [101] direction. The Cu–Cl bond distances are 2.343 (1) and 2.483 (2) Å, while Cu–N is 1.976 (5) Å.

Comment

Recently, much effort in metal-organic frameworks has been focused on coordination polymers with organic rod–like rigid ligands containing either *N*- or *O*-donors; the isonicotinic acid ligand is a combination of both. Until now, a large number of metal-organic framework structures containing isonicotinic acid ligands have been reported, including copper isonicotinates (Chapman *et al.*, 2001; Yu *et al.*, 2002; Kang *et al.*, 2004; Lu *et al.*, 2003; Goher & Mak, 1987), cobalt isonicotinate (Feng *et al.*, 2006) and rare-earth isonicotinates (Zhang *et al.*, 2005).

We present here the synthesis and crystal structure of the title polymeric compound, (I) (Fig. 1). The Cu atom is tetra-

Figure 1

Part of the polymeric structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z; (iii) x, 1 - y, z.]

Received 13 October 2006 Accepted 19 December 2006

All rights reserved

© 2007 International Union of Crystallography

metal-organic papers

hedrally coordinated by three Cl⁻ ions and one N atom from an isonicotinic acid ligand (Fig. 1 and Table 1); each of the Cl⁻ ions bridges three Cu atoms, generating a polymeric $[Cu-Cl]_n$ chain. The Cu and Cl atoms lie on mirror planes, across which the isonicotinic acid ligands are disordered. Each Cu₂Cl₂ ring is centrosymmetric. The geometric parameters are in agreement with those found in reported copper nicotinates (Bai *et al.*, 2005).

The carboxyl groups of isonicotinic acid are involved in O– H···O hydrogen bonds $[O2-H2\cdots O1^i: O2-H2 = 0.88 (5) \text{ Å}, H2\cdots O1^i = 1.88 (5) \text{ Å}, O2\cdots O1^i = 2.676 (7) \text{ Å} and O2-H2\cdots O1^i = 151 (4)°; symmetry code: (i) <math>-1 - x, \frac{1}{2} + y, -z]$ (Fig. 2). It is generally accepted that Cu^{II} cations can be reduced to Cu^I by pyridine derivatives under hydrothermal conditions. Although Cu(OAc)₂ was used as a starting material, copper(I) is observed in (I). Cu^{II} can be reduced to Cu^I by reduction involving isonicotinic acid (Zhang *et al.*, 2005).

Experimental

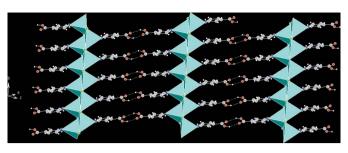
Orange needle-like crystals were hydrothermally synthesized from a mixture of CuCl₂ (0.0637 g), MnCl₂ (0.3541 g), isonicotinic acid (0.2438 g), $H_3BO_3(0.0219 \text{ g})$, HCl (0.165 g), and H_2O (8 g). The mixture was kept in a 25 ml Teflon-lined steel autoclave at 443 K for 10 d. The autoclave was slowly cooled to room temperature, and then the product was filtered, washed with distilled water, and dried at room temperature.

Crystal data

$$\begin{split} & [\mathrm{CuCl}(\mathrm{C_6H_5NO_2})] \\ & M_r = 222.10 \\ & \mathrm{Monoclinic}, \ P_{2_1}/m \\ & a = 7.109 \ (4) \ \mathrm{\AA} \\ & b = 3.732 \ (2) \ \mathrm{\AA} \\ & c = 14.073 \ (7) \ \mathrm{\AA} \\ & \beta = 101.381 \ (6)^\circ \\ & V = 366.1 \ (3) \ \mathrm{\AA}^3 \end{split}$$

Data collection

Bruker APEX2 CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.559, T_{max} = 0.827$


Refinement

refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.112$ S = 1.06836 reflections 84 parameters H atoms treated by a mixture of independent and constrained Z = 2 D_x = 2.015 Mg m⁻³ Mo K α radiation μ = 3.29 mm⁻¹ T = 293 (2) K Needle, orange 0.20 × 0.08 × 0.06 mm

3328 measured reflections 836 independent reflections 657 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$ $\theta_{\text{max}} = 26.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 \\ &+ 0.1373P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.64 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.51 \ e \ \text{\AA}^{-3} \end{split}$$

Figure 2

The crystal structure of (I), showing the polymeric tehrahedra with hydrogen-bonded (dashed lines) carboxyl groups of nicotinic acid.

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.976 (5)	Cu1-Cl1	2.4831 (18)
N1-Cu1-Cl1 ⁱ	116.43 (8)	Cu1 ⁱ -Cl1-Cu1 ⁱⁱ	105.58 (7)
N1-Cu1-Cl1	104.35 (15)	Cu1 ⁱ -Cl1-Cu1	73.36 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Because of the symmetry, the isonicotinic acid molecule was refined using a split model with an occupancy of 0.5 for atoms C1, C2, C3, C6 and O1. C-bound H atoms were positioned geometrically (C– H = 0.96 Å) and refined using a riding model. The hydroxy H atom was located in a difference map and refined with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm O)$; O–H = 0.67 (2) Å.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Education Office Foundation of Liaoning province (05L220).

References

Bai, X., Li, Y., Wang, E. & Xu, L. (2005). *Inorg. Chim. Acta*, **358**, 2571–2574.
Bruker (2005). *APEX2*. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chapman, M. E., Ayyappan, P., Foxman, B. M., Yee, G. T. & Lin, W. (2001). Cryst. Growth Des. 1, 159–163.
- Feng, W.-J., Zhou, G.-P., Zheng, X.-F., Liu, Y.-G. & Xu, Y. (2006). *Acta Cryst.* E62, m2033–m2035.
- Goher, M. A. S. & Mak, T. C. W. (1987). Inorg. Chim. Acta, 127, L13–L16.
- Kang, Y., Yao, Y., Qin, Y., Zhang, J., Chen, Y., Li, Z., Wen, Y., Cheng, J. & Hu, R. (2004). *Chem. Commun.* pp. 1046–1047.
- Lu, J. Y. & Babb, A. M. (2003). Chem. Commun. pp. 1346-1347.
- Sheldrick, G. M. (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Yu, J., Xu, J., Ye, L., Ding, H., Jing, W., Wang, T., Xu, J., Jia, H., Mu, Z. & Yang, G. (2002). *Inorg. Chem. Commun.* 5, 572–576.
- Zhang, M., Zhang, J., Zheng, S. & Yang, G. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.